
A Data-Driven Framework for Identifying Nonlinear Dynamic Models
of Genetic Parts
Kirubhakaran Krishnanathan,* Sean R. Anderson, Stephen A. Billings, and Visakan Kadirkamanathan

Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, U.K.

*S Supporting Information

ABSTRACT: A key challenge in synthetic biology is the
development of effective methodologies for characterization of
component genetic parts in a form suitable for dynamic
analysis and design. In this investigation we propose the use of
a nonlinear dynamic modeling framework that is popular in
the field of control engineering but is novel to the field of
synthetic biology: Nonlinear AutoRegressive Moving Average
model with eXogenous inputs (NARMAX). The framework is
applied to the identification of a genetic part BBa_T9002 as a
case study. A concise model is developed that exhibits accurate
representation of the system dynamics and a structure that is
compact and consistent across cell populations. A comparison
is made with a biochemical model, derived from a simple enzymatic reaction scheme. The NARMAX model is shown to be
comparably simple but exhibits much greater prediction accuracy on the experimental data. These results indicate that the data-
driven NARMAX framework is an attractive technique for dynamic modeling of genetic parts.
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The field of synthetic biology has progressed through a
number of stages1,2 from the early concept,3,4 to the initial

demonstrations of simple devices,5−7 and more recently to
systems composed of integrated modules that perform useful
tasks.8−11 There is now an expectation that synthetic biology
will deliver solutions to global challenges, for instance, in
healthcare,12−14 food security,15,16 and energy production.17−19

However, there are a number of obstacles to overcome before
realizing such transformative systems in practice.20,21 In
particular, challenges in characterization and design are directly
linked to our ability to derive useful models of genetic parts and
biosystems because the concept of model-based design is
central to the engineering ethos. Therefore, methodologies for
model-based design are likely to underpin the future success of
top-bottom biological synthesis using off the shelf genetic parts
and modules.22,23 Here, we extend recent results in static input-
output characterization24 by developing a data-driven frame-
work for describing the dynamic properties of genetic parts.
Models derived using this framework could be specified in data
sheets associated with genetic parts with the purpose of aiding
in the control design and synthesis of larger systems.
The system model aids design procedures and prediction, as

well as promoting high reliability and modular abstraction.21,23

Recent advances in characterizing and describing genetic
parts24 have stimulated debate concerning the appropriate
strategies for modeling, highlighting choices for the model
form, such as static versus dynamic, deterministic versus
stochastic, and single-cell versus population level.21 Taking
inspiration from the engineering community, we observe that in

the field of control engineering, data-driven dynamic models
dominate process descriptions, where techniques for modeling
are derived from the domain of system identification.25

Data-driven system identification contrasts with modeling
approaches commonly applied to biological processes. These
include protein expression26−29 and cell growth,30 which have
been modeled using simplifications of enzymatic reaction
schemes, e.g., the Michaelis−Menten (MM) and Hill
equations.31 These models are simple to apply but limited,
retaining only a fixed model structure that is not adjusted to the
complexity of the system under investigation. At the other
extreme, dynamic models used in synthetic biology have also
been explored that take the form of many coupled
ordinary32−34 or stochastic35 differential equations (ODEs
and SDEs, respectively): As the system and network grows
larger, the number of equations needed to describe the
interlinked processes using ODEs or SDEs increases, leading
to an explosion in model complexity. Models of this type are
typically intractable for dynamic systems analysis and design.
In this investigation we propose the use of the Nonlinear

AutoRegressive Moving Average model with eXogenous input
(NARMAX) modeling framework.36,37 We suggest that the
NARMAX framework is a solution for overcoming the typical
problems of models for genetic parts that are overly complex,
unwieldy, and of unknown structure. The NARMAX model
class provides a general nonlinear dynamic system description,
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which was developed in the field of system identification: it is a
data-driven technique in terms of both parameters and
structure.38,39 In relation to the model representation issues
discussed above: the NARMAX model (i) is dynamic but can
represent static relationships (as can all dynamic models, for
which the reverse is not true); (ii) can represent both
deterministic and stochastic processes via noise models; (iii)
is data-driven and hence can apply equally well to single-cell or
population level representations, depending on the scale of the
process observations.
The NARMAX methodology has been applied in a wide

range of areas, such as biomedical engineering,40,41 sound and
vibration systems,42,43 power generation,44,45 and economet-
rics.46 The breadth and success of these various applications
demonstrates the versatility and utility of the model class. The
use of the NARMAX modeling framework in the area of

synthetic biology is a novel step, which we suggest will hold the
following advantages:

1. Compact model descriptions: the NARMAX model can
produce very compact descriptions of systems in
comparison to alternatives such as the Volterra series47

and biophysically derived ODEs/SDEs, which will be
well suited to biosystem design.

2. Data-driven structure detection and parameter estima-
tion: typical approaches to modeling biosystems require
insight into the underlying biochemical processes, which
often results in either oversimplified or overparame-
terised descriptions. The NARMAX methodology
provides a framework for detecting a parsimonious set
of model terms that describes the observed dynamics.

3. Integrated framework for identification, analysis, and
design: there is wide supporting literature that is related

Figure 1. Genetic part BBa_T9002, NARMAX model representation and identification signals. (a) The BBa_T9002 system with input and output of
3OC6HSL and GFP expression, respectively. (b) NARMAX model representation of the BBa_T9002 system. (c) The observed GFP signal and
derivatives obtained from the smoothing algorithm (red) in comparison to derivatives from numerically differencing the raw GFP signal (gray).
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not only to NARMAX model identification but also to
the use of such models in dynamic systems analysis and
control design.48,49

To demonstrate the identification approach outlined above,
here we develop a continuous-time NARMAX model50 for the
genetic part BBa_T9002 (this is a labeled identity of the genetic
part in the registry of parts: http://partsregistry.org/Part:BBa_
F2620). The advantage of using this system as a case study is
that it has been well-studied and characterized using alternative
modeling techniques24 and the data is available online,
facilitating further comparison and investigation. The genetic
part BBa_T9002 is a composite receiver-reporter quorum
sensing system that is made up of BBa_F2620 (receiver) and
BBa_E0240 (reporter). Canton et al.24 derived a model based
on the Hill equation for BBa_F2620 indirectly using the data
collected for BBa_T9002 (where knowledge of the model for
BBa_E0240 was assumed). Here, we first take the approach of
modeling the complete system using the original dynamic form
of the reaction scheme from which the Hill equation is derived,
which highlights certain drawbacks of that approach, and
second, we identify the system using the NARMAX framework
producing a compact and accurate model, useful for systems
analysis.

■ RESULTS AND DISCUSSION
Overview. BBa_T9002 is a quorum sensing receiver-

reporter system24 shown in Figure 1a. In the absence of
tetracycline, LuxR protein is constitutively expressed and
upregulated on addition of 3-ox-ohexanoyl-L-homoserine
lactone (3OC6HSL), in cells that have little or no TetR. The

LuxR protein and 3OC6HSL forms a complex that activates the
LuxR regulated promoter (BBa_R0062) producing the
receiver’s (BBa_F2620) output, polymerases per second
(PoPS). On the activation of the LuxR regulated promoter,
the expression of green florescence protein GFP can be
observed, which serves as the output for the BBa_T9002
system.
Two different approaches to modeling the system were taken

here: a biochemical model based on a well-known description
of an enzymatic reaction scheme (ERS) and a data-driven
continuous-time NARMAX model (Figure 1b). Models were
identified directly in continuous-time. To estimate derivatives
of the GFP expression signal used in the identificaton of each
model, we used a smoothing algorithm (see Methods). This
technique led to derivative estimates that were relatively noise-
free compared to directly differenced signals (Figure 1c).

Identification of Dynamic and Static Biochemical
Models. Introduction. The Michaelis−Menten equation
and the Hill equation (see Methods) are well-known models
used in describing enzymatic reactions. These simplified models
are derived from a more complicated coupled nonlinear
dynamic model (see Methods) using the assumptions that
the total enzyme concentration is constant, the rate of change
of enzyme−substrate complex is zero, and the substrate level is
at steady state (further discussed in the Supporting
Information). A drawback of the MM and Hill equations is
that they do not provide a full dynamic description of the
system; only the static relationship between product derivative
and substrate input is captured. To address this drawback we
used the full dynamic description of the enzymatic reaction

Figure 2. Biochemical model simulation for Expt 1. (a) The simulated model input signal s(t). (b) Comparison of GFP expression (blue) and the
model prediction p(t) (red). (c) Rate of change of GFP expression (blue) and model prediction (red). (d) Rate of change of GFP expression at the
150th minute (blue), the Hill equation prediction (green), and ERS model prediction (red). Note that the response corresponding to the lowest
input level 3OC6HSL = 0 has been omitted because of the log transformation.
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scheme associated with the Hill equation, which we denote
here as the enzymatic reaction scheme (ERS) model (see
Methods).
Enzymatic Reaction Scheme Model of BBa_T9002. The

ERS model was identified from observations of the dynamic
behavior of the genetic part BBa_T9002 (see Methods).
Analyzing the simulated results in comparison to the
experimental data, we noted that the estimated level of the
3OC6HSL signal remained constant from the time of induction
to quasi steady state (Figure 2a); it may be the case here that
the concentration of 3OC6HSL at the point of induction was
very high in comparison to the amount used up by the cells. In
addition, the observed GFP dynamics were not well described
by the ERS model (Figure 2b and c): the prediction error
variance of the GFP signal was 24.3%. This low prediction
accuracy indicated the possibility of missing dynamics in the
ERS model or that the ERS model structure was not
appropriate for describing the system.
The peak values of rate of GFP expression indicated a

sigmoid shape (Figure 2d), which is usually observed when
cooperative binding is involved in the reaction process.31

Therefore we used the Hill equation to fit these peak values as a
function of 3OC6HSL. The Hill equation showed a much
improved fit to the steady-state behavior compared to the ERS
model prediction at the same point in time (Figure 2d).

Enzymatic Reaction Scheme Model Is Not Consistent with
the Hill Equation. The Hill equation is generally considered by
the synthetic community to be a useful model for describing
simple switching properties in biochemical processes.24,51,52 In
this case, the Hill equation gave a much improved prediction of
the steady-state GFP expression rate, compared to the ERS
model (Figure 2d). However, the Hill equation failed to
accurately capture the decay at high levels of 3OC6HSL, which
was a feature across all experiments. This decay could be a
result of toxicity to the cells.53

It is interesting to note that both the Hill equation and the
ERS models are derived from the same reaction scheme (see
Methods and Supporting Information). However, it is apparent
from these results that the Hill equation provides a much
improved model of the steady-state process. This inconsistency
raises a question over the link between the Hill equation and
the dynamic model on which it is predicated, and hence the
interpretability of the Hill equation parameters. A possible
explanation for the improvement of the Hill equation over the
ERS model is that the sigmoidal form of the Hill equation is
coincidentally well suited to describing the switching behavior
observed in the data. Another explanation is that the optimal
ERS model parameters were not obtained here due to the
difficulties inherent in nonlinear parameter estimation.

Figure 3. NARMAX structure detection and model simulation for Expt 1. (a) Mean-squared-simulation-error (MSSE) for NARMAX models with an
MSSE < 5 (models are ordered by increasing complexity, i.e., number of model terms). (b) Akaike and Bayesian information criteria (AIC and BIC,
respectively): the optimal model with minimum AIC and BIC is model structure 16 (models are ordered by increasing complexity, i.e., number of
model terms). (c) NARMAX model input signals. (d) Observed GFP signals (blue) and NARMAX prediction (red). (e) Rate of change of GFP
(blue) and NARMAX model prediction (red). (f) Rate of change of GFP expression at the 150th minute (blue), the Hill equation prediction
(green), the NARMAX model prediction at observed input concentrations (red stars), and the NARMAX model prediction at interpolated input
concentrations (red crosses). Note that the response corresponding to the lowest input level 3OC6HSL = 0 has been omitted because of the log
transformation.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300009t | ACS Synth. Biol. 2012, 1, 375−384378



In the context of biosynthesis, model inaccuracies will be
problematic. If a model fails to capture the key properties of a
system, then errors will be imposed on the system design. This
motivates the development of alternative modeling strategies
that will solve these challenges.
Identification of a Data-Driven Dynamic Model - the

NARMAX Framework. Introduction. The NARMAX
identification framework is used in a data-driven context to
obtain input-output nonlinear dynamic models. For the system
BBa_T9002 we defined the input to the system as 3OC6HSL
concentration. The output we defined as rate of change of GFP
expression. The reason for this was that it is usually preferable
to model a stable system in a data-driven framework, and the
initial growth in GFP is unstable, whereas its derivative is stable.
Furthermore, in the data set considered here the input signal
was not observed through time. Hence, we made the
assumption that over the relatively short time-scale of the
recording (from the time of induction to quasi steady state) the
input remained constant, equivalent to the initial level of
3OC6HSL.
An advantage of the NARMAX framework is that the choice

of model structure is data-driven. This is known as the structure
detection problem, and there are a number of algorithms that
can be used to automate the choices that determine model
structure, e.g., dynamic order and basis function place-
ment.38,54,55 Structure detection is a powerful asset of the
NARMAX framework because it can highlight “missing”
dynamics, i.e., terms that are absent from biochemically derived
models, which are required to accurately describe the system. A
further advantage of the NARMAX model is that it is linear-in-
the-parameters. This is a useful feature, which facilitates rapid
identification and comparison of many different proposed
model structures.
NARMAX Model of BBa_T9002. Typically, the superset of

possible NARMAX model terms is very large, and so the
structure is detected using efficient search algorithms based on,
for instance, forward regression with orthogonal least-squares.38

However, in this investigation the number of terms was
relatively small (only 9 candidate terms), and so the structure
was detected by an exhaustive search of all possible model
structures resulting from different term combinations (a total of
29 = 512 models). To detect the model with the optimal trade-
off in terms of maximum accuracy and minimal complexity, we
used the Akaike and Bayesian information criteria (AIC and
BIC, respectively).25 For model selection, information criteria
are preferable to the use of residual-error metrics (e.g., mean-
squared-simulation-error, MSSE) for model comparison. This is
because ICs penalize model complexity, whereas the MSSE
does not. Instead, the MSSE tends to decrease with each
addition of a parameter. This point is illustrated by comparing
model selection plots for Expt 1 in Figure 3a and b.
The continuous-time NARMAX model of BBa_T9002

identified using the AIC and BIC was,

̈ = + + ̇ + ̃y t c y t c y t c y t u t( ) ( ) ( ) ( ) ( )1
2

2
3

3

where y(t) was the model output signal rate-of-GFP-expression,
with associated parameters c1, c2, and c3. The input term u ̃(t)
was obtained from a static transformation G(.) of the input
signal 3OC6HSL, which was primarily used to describe the static
switching effect in dynamics across linearly increasing levels of
3OC6HSL (see Methods).

The ERS model identified above was demonstrated in
simulation to be inaccurate (Figure 2), where the error variance
was 24.3%. However, in contrast, the NARMAX model
provided a much more accurate description of the system
BBa_T9002 (an error variance of 0.2%) while retaining a
simple model structure (compare Figure 2 to Figure 3c−f). In
order to test the behavior of the NARMAX model on input
concentrations not used in the identification procedure, we
simulated the model with additional input concentrations. The
simulation results from using these intermediate inputs
(3OC6HSL input concentrations: 1 × 10−9.5, 1 × 10−8.5, 1 ×
10−7.5, 1 × 10−6.5, 1 × 10−5.5, 1 × 10−4.5 M.) demonstrated that
the NARMAX model behaved as expected (Figure 3f).
In effect, we have identified a NARMAX model that seeks to

describe the same relationship as part of the ERS model: the
input-output dynamics between 3OC6HSL and GFP expression
(see eq 2 in Methods). The nonlinear dynamic terms identified
using the NARMAX framework were y2(t) and y3(t). These
terms have participated in greatly improved accuracy of the
NARMAX description without significantly increasing the
model complexity. At this stage, the biochemical features that
these additional terms might represent are unknown but of
interest for future work. In addition, we note that their lack of
interpretability is not relevant to the utility of the model for use
in design, in which context it would appear that the NARMAX
model is highly preferable.

Consistent NARMAX Model Identification over a Set of
Colonies. The NARMAX modeling framework was applied
separately to 3 colonies, with 3 instances of the system
BBa_T9002 in each colony making a total of 9 experimental
data sets: colonies 1 and 2 were used for identification of the
model, and colony 3 was reserved for cross validation. The
same model structure of the dynamic function was selected for
all 6 experimental data sets across colonies 1 and 2. In 4 of the
experimental data sets, this model structure had little or no
sensitivity toward the truncation point of the data, while for the
remaining 2 experimental data sets, there was some sensitivity
where slight differences occurred in structure depending on the
exact time at which the data was truncated. Such sensitivity is
not unusual in data-driven modeling where time-domain
descriptions are typically non-unique.
Parameters of the NARMAX model were fairly consistent

across data sets; variation was within an order of magnitude,
and consistent differences were observed between colonies
(Figure 4a−c). NARMAX model simulations were similar in
accuracy to those shown in Figure 3, which is indicated by the
similarity in MSSE (Figure 4d). Table 1 summarizes the
variability in the parameters for the dynamic NARMAX
parameters.
In addition, we estimated separate static input transformation

functions Gj(.), for j = 1, ..., 9, pertaining to each data set. These
were of a consistent form, with some variability over scaling
(Figure 5a); a mean static transformation was also estimated
using all data sets (Figure 5b). The variability in both static and
dynamic parameters across data sets was likely due to
heterogeneity in cell populations. This is generally caused by
the total effect of intrinsic and extrinsic noise in single cells.
In order to provide a single model description for the system

BBa_T9002 across data sets, we used the mean values of
dynamic parameters from Table 1 in combination with the
mean static input transformation function (Figure 5b). This
single model was similarly accurate in describing the dynamic
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behavior of the system across both training and validation data
sets (Figure 6).
Summary. In this investigation we have proposed the

NARMAX modeling framework for dynamic characterization of
genetic parts. This framework has particular advantages for use
in top-bottom design in higher order systems: the NARMAX
model is usually compact, is data-driven in both structure and
parameters, and is part of a wider toolset of associated design
and analysis methods. We applied the NARMAX modeling
framework to the identification of a genetic part, BBa_T9002,
for which we obtained an accurate dynamic model. In addition,
we benchmarked the NARMAX model against a biochemical
model, which was based on an enzymatic reaction scheme. The

enzymatic reaction scheme model was shown to be inaccurate
and inconsistent with its associated simplified form, the Hill
equation. In contrast to the reaction scheme model, the
NARMAX model provided an accurate dynamic description of
the system while retaining a simple structure. On the basis of
these results, the NARMAX modeling framework offers great
promise for use in the characterization of synthetic biosystems.

■ METHODS
Experimental Data. The experimental data describing the

dynamic response of the genetic part used in this investigation,
BBa_T9002, was collected by Canton et al.24 The data can be
obtained from the BioBrick Registry of Standard Biological
Parts for part BBa_F2620 (http://partsregistry.org/Part:BBa_
F2620). The experimental data consisted of GFP expression
over time, observed over ∼180 min (77 time steps, sampled at
intervals of ∼141 s) of BBa_T9002 over 8 different 3-ox-
ohexanoyl-L-homoserine lactone (3OC6HSL) input concen-
trations: 0, 1 × 10−10, 1 × 10−9, 1 × 10−8, 1 × 10−7, 1 × 10−6, 1
× 10−5, 1 × 10−4 M. In this investigation we only performed
systems modeling up to the point of quasi steady state behavior,
which was defined as the peak of the rate of GFP expression.
This truncation resulted in data records that were approx-
imately 150 min in length (∼60 time samples; the range was
50−70 time samples). Here we analyzed data from 3 colonies
of BBa_T9002 (out of a total of 9 observed by Canton et al.24)
There were 3 replicates for each colony, resulting in 9 expts in
total analyzed here. Expts 1−3, 4−6, and 7−9 were from
colonies 1, 2, and 3 respectively.

Dynamic Modeling Based on an Enzymatic Reaction
Scheme. Dynamic Representation of the Reaction
Scheme. Consider the reaction scheme

+ → +
−
H Ioooe n s e e p.
k

k
s

k

1

1 2

where e denotes enzyme, s is substrate, es is the enzyme−
substrate complex, p is product, n is the Hill coefficient, and k1,
k−1, and k2 are parameters defining the rate of reactions. In this
modeling investigation we use substrate s to represent
3OC6HSL and product p to represent the GFP expression.
The reaction scheme can be described by the coupled dynamic
nonlinear system represented using ODEs - enzymatic reaction

Figure 4. NARMAX model identification across colonies and
experimental data sets. (a−c) Estimates of NARMAX model dynamic
parameters c1, c2, and c3. (d) NARMAX model mean-squared-
simulation-error (MSSE) for each of 6 different experimental data
sets where sets are grouped by colony: colony 1 comprises Expts 1−3;
colony 2 comprises Expts 4−6.

Table 1. Mean and Variability in NARMAX Model
Parameters Across Colonies

parameters c1 c2 c3

mean 1.34 × 10−6 −3.53 × 10−10 −0.1134
variance 7.16 × 10−13 3.85 × 10−20 2.61 × 10−4

Figure 5. Static model of the input nonlinearity. The NARMAX dynamic model input u ̃(t) was obtained from transforming u*(t) = log10(gu(t))
through a function G(u*(t)), where u(t) was the level of 3OC6HSL. (a) Separate estimates of the static function G(.) (red) across 6 experimental
data sets (blue) used for identification purpose. (b) Single estimate of the static function G(.) (red) using 6 experimental data sets compared to the
average of the experimental data curves in panel a (blue dots).
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scheme (ERS) model (derivations are provided in the
Supporting Information):31,56

̇ = + ̇ + ̇s t a s t a p t a s t p t( ) ( ) ( ) ( ) ( )n n
1 2 3 (1)

̈ = + ̇ + ̇p t b s t b p t b s t p t( ) ( ) ( ) ( ) ( )n n
1 2 3 (2)

where a1 = −nk1e0(t), a2 = nk−1/k2, a3 = nk1/k2, b1 = k2k1e0(t),
b2 = −k1 − k2, b3 = −k1, and e0(t) denotes total enzyme
concentration. Assuming total enzyme concentration and the
rate of change of enzyme−substrate complex to be constant
and equal to zero respectively, we can derive the more often-
used Hill equation (also equivalent to the Michaelis−Menten
equation for n = 1), which is a simplification of the full dynamic
form described in eqs 1 and 2:31

̇ =
+

p t
V s

s k
( ) m

n

n
p
n

ss

ss (3)

where sss is the substrate in steady-state, kp
n = (k−1 + k2)/k1 and

Vm = k2e0(t).
Note that the Hill equation should provide a description of

the reaction scheme that is consistent with the dynamic form
presented above in eqs 1 and 2 for substrate signals that are
near constant. Also note that in the case of steady-state
substrate the LHS of eq 1 is by definition equal to zero, s(̇t) = 0.
Hence, any dynamic behavior in the system must be
predominantly described by eq 2.
Parameter Estimation. Parameters of the ERS model were

estimated using the available prior information: (i) initial
3OC6HSL level, s(t = 0), and (ii) GFP expression over time,
p(t). A separable least-squares (SLS) algorithm57,58 was used to
estimate the model parameters, where the main feature of the
approach was to separate the parameters into linear and
nonlinear sets, ζl = (b1,b2,b3) and ζn = (a1,a2,a3,n) respectively.
The advantage of the SLS algorithm is that it typically
converges in fewer iterations, has improved numerical
conditioning and requires initialization of fewer parameters in
comparison to the full nonlinear optimization problem.57

We define the optimization cost function for M experimental
signals corresponding to different input levels of 3OC6HSL,
with N samples per signal as

= || − Γ ζ ζ ||J
MN

P
1

( )n l 2
2

(4)

where P = [p1
T, ..., pM

T ]T, pj = [pj̈(1), ..., p ̈(N)]T, Γ(ζn) =
[γ1(ζn)

T, ..., γM(ζn)
T]T and

γ ζ =

̂ ̇ ̂ ̇

⋮ ⋮ ⋮

̂ ̇ ̂ ̇

⎡

⎣

⎢⎢⎢⎢

⎤

⎦
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( )

(1) (1) (1) (1)

( ) ( ) ( ) ( )
j n

j
n

j j
n

j

j
n

j j
n

j (5)

and s ̂ is obtained from simulation of eq 1, given the initial
condition of the substrate and the nonlinear parameters ζn. The
linear parameters ζl can be expressed in terms of the nonlinear
parameters ζn using the least-squares solution

= †z G z P( )l n (6)

where † denotes the pseudo-inverse, Γ(ζn)† = (Γ(ζn)TΓ-
(ζn))

−1Γ(ζn)T. Substituting eq 6 into eq 4 leads to the reduced
optimization problem, from which the linear parameters have
been eliminated:

|| − Γ ζ Γ ζ ||
ζ

†
MN

P Pmin
1

( ) ( )n n 2
2

n (7)

The nonlinear optimization technique used in this case was a
quasi-Newton method (implemented using the Matlab function
fminunc). The nonlinear parameters were initialized using a
grid search, where the parameter ranges were a1, a2, a3 ∈ [−10,
−9.9, ..., 10] and n ∈ [0, 0.5, ..., 6]. In implementation, the ERS
model was simulated using a first order Euler approximation for
computational simplicity (we verified on a subset of the data
that use of higher order numerical integration methods did not
alter the results).

NARMAX Modeling Framework. NARMAX Model
Representation. In general, the NARMAX model is obtained

Figure 6. NARMAX model prediction on validation data. (a) A single NARMAX model with averaged parameter estimates was simulated (red) and
compared to a reserved set of validation data (blue). (b) The percentage prediction error variance from the averaged NARMAX model using both
estimation (blue) and validation (red) data sets.
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in a data-driven framework from samples of input-output
signals. In this investigation we defined the input to the system,
u(t) ∈ ℝ, as 3OC6HSL concentration and the output, y(t) ∈ ℝ,
as rate of change of GFP expression (due to its stable nature).
For predicting GFP using the identified model, we numerically
integrated the prediction from the NARMAX model. The
structure of a general continuous-time NARMAX model can be
defined by50

=y t F tz( ) ( ( ))i( )
(8)

= ̇ ̇− −t u t u t u t y t y t y tz( ) ( ( ), ( ), ..., ( ), ( ), ( ), ..., ( ))i i( 1) ( 1)

(9)

where i is the differential order, F(z(t)) is some unknown
nonlinear function and z(t) ∈ ℝ2i is the model input vector of
system input-output derivatives. We describe the function F(.)
using a basis function decomposition:

∑= θ ϕ
=

y t tz( ) ( ( ))i

j

L

j j
( )

1 (10)

where ϕj(.) is a basis function with associated parameter θj ∈
ℝ. In this investigation we used polynomial basis functions of
maximum order q = 3 and assumed second order system
dynamics, i = 2.
The general form of the NARMAX model outlined above

was specialized for this investigation by only considering
derivatives in the output signal and no cross-product terms
between input and output. This was due to the assumption that
the input level of 3OC6HSL was constant over the duration of
each experiment, so input derivatives were zero and cross-
product terms were unidentifiable (more details are given in the
Supporting Information). In addition, we noted that there
appeared to be a nonlinear gain variation associated with
different input levels of 3OC6HSL, which we described using
separate input gain terms kj, for j = 1, ..., M, resulting in the
following modification of the NARMAX model:

= ̇ +−y t F y t y t y t k u t( ) ( ( ), ( ), ..., ( )) ( )j
i i

j j
( ) ( 1)

(11)

for j = 1, ..., M experimental signals corresponding to different
constant input levels of 3OC6HSL.
NARMAX Model with Static Input Nonlinearity. The static

nonlinear gain variation across input levels was modeled here
using a function G(.), which mapped the 3OC6HSL input u(t)
to the dynamic model input u ̃(t), and the NARMAX model was
correspondingly modified so that

= ̇ + ̃−y t F y t y t y t u t( ) ( ( ), ( ), ..., ( )) ( )i i( ) ( 1)
(12)

where u ̃(t) = G(u∗(t)), u∗(t) = log10(gu(t) (g is a scaling
parameter discussed below). The log transformation was
applied to the scaled input gu(t) because of the log spacing
in levels of 3OC6HSL. The function G(.) was described by the
basis function decomposition

∑̃ = ψ *
=

u t w u t( ) ( ( ))
j

B

j j
1 (13)

where wj ∈ ℝ is the jth basis function parameter, B is the
number of basis functions, and in this investigation we used

radial basis functions, specifically the squared exponential
function

ψ * = −
σ

|| * − μ ||
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟u t u t( ( )) exp

1

2
( )j

j
j2 2

2

(14)

where μj and σj are the respective centers and widths of the jth
basis function. Basis functions were centered on the levels of
the input data values u∗(t) and the corresponding width
parameters were heuristically tuned in the range σj ∈ [1,1.5] ∀
j.

Parameter Estimation and Structure Detection. An
advantage of the basis function decomposition of the
NARMAX model defined in eq 10 is that it is linear-in-the-
parameters, hence we can use least-squares for parameter
estimation; first we define the regression equation:

= Φθ + εY i( ) (15)

where Y(i) = (y1
(i), ..., yM

(i))T is the model output vector of
differential order i, ε is the model residual error vector, θ = (k1,
..., kM,c1, ..., cL−1)

T, is the parameter vector, and Φ = [U Y] is the
regression matrix where

= ⋱

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

U
u

u

0

0 M

1

(16)

= ⋮ ⋮ ⋮

−

−

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

( ) ( ) ( )

( ) ( ) ( )
Y

y y y

y y y

...

...

i q

M M M
i q

1
(0) 1

1
(1) 1

1
( 1)

(0) 1 (1) 1 ( 1)
(17)

where uj = (guj,1, ..., guj,N)
T, and yj

(i) = (yj,1
(i), ..., yj,N

(i)) for j = 1, ...,
M. The least-squares estimate of the parameters is

θ̂ = Φ†Y i( ) (18)

where Φ† = (ΦTΦ)−1ΦT. In order to improve the numerical
conditioning of the regression matrix Φ, we rescaled the input
levels using a gain g, where g = 1 × 1011.
The Y matrix, defined above, was setup to contain a superset

of model terms composed of polynomial transformations of
y(t) and its derivatives. As part of the identification procedure a
parsimonious model structure was detected composed of a
reduced set of those terms. In this investigation the number of
terms was relatively small (9 terms) and so the structure was
detected by an exhaustive search of all possible term
combinations (29 = 512). In order to compare models we
used information criteria (IC) to obtain the optimal trade-off
between model accuracy and model complexity - Akaike’s and
the Bayesian IC25 (details can be found in the Supporting
Information). In implementation, the NARMAX model was
simulated using a first order Euler approximation.
The basis function parameters for the static nonlinear input

function G(.) were estimated using least-squares from the
target data ũ = (k1u1,0, ..., kMuM,0)

T, where uj,0, for j = 1, ..., M,
corresponded to the rescaled input levels of 3OC6HSL.

Signal Derivative Estimation. A problem that hampers
continuous-time modeling is obtaining signal derivatives. The
observed signals are typically corrupted by high frequency
measurement noise: approximating the derivatives from directly
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differencing the observed signal amplifies this noise. To
overcome this problem, a method for derivative estimation
was used here based on a Taylor-series expansion of the signal
in conjunction with the Kalman smoothing technique59 (see
Supporting Information for more details).
The GFP signal, which we denote as y(̃t) (where the

NARMAX modeling signal y(t) = ̃ ̇y(t), and the GFP derivatives
can be represented in the discrete-time state-space model,

= ++ Ax x wk k k1 (19)

̃ = +y C vxk k k (20)

where C = (1, 0, ..., 0) is the measurement matrix, xk = (yk̃, ̃ ̇yk,
..., yk̃

(D)) ∈ ℝnx is the state vector at sample time k that contains
the vector of GFP expression and its derivatives up to order D,
nx = D + 1, wk ∼ N(0,Q) and νk ∼ N(0,R) are independent zero
mean Gaussian white noise signals, and the state transition
matrix A is described using rows that are based on the Taylor
series expansion of the signal:

=

! !

− !
⋮ ⋮

−

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢
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⎦

⎥⎥⎥⎥⎥⎥⎥⎥
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T
T T

D

T
T
D

1
2

...

0 1 ...
( 1)

0 0 ... 1

D

D

2

1

(21)

where T is the time step, which was set to a unit sample step, T
= 1. The elements of the state noise covariance matrix Q are
given by

=
σ

+ − ! + − ! + − +

+ − +
q

T
D i D j D i j( 1 ) ( 1 ) (2 3 ( ))ij

w
D i j2 2 3 ( )

(22)

where σw is a tuning parameter describing the power of the
state noise. In order to obtain the derivatives in the state vector,
a Kalman smoother was implemented using the Rauch−Tung−
Streibel recursions (further details are in the Supporting
Information).60 The GFP derivatives estimated using this
algorithm were used in both the enzymatic reaction scheme
modeling and the NARMAX identification.
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